

 1

 2

Table of Contents

DISCLAIMER .. 3
WHAT IS INCLUDED IN A REPORT BY THE AUDIT INSTITUTE? ... 3

OVERVIEW .. 4
PROJECT SUMMARY .. 4
SUMMARY OF FINDINGS .. 4

EXECUTIVE SUMMARY .. 5
CONTRACTS IN SCOPE ... 5

EXTERNAL VULNERABILITY FINDINGS .. 6
FINDINGS AND RECOMMENDATIONS .. 7
FUNCTIONS OVERVIEW ... 9
CONTROL FLOW .. 11
 ... 12
INHERITANCE GRAPH .. 13
END OF REPORT .. 14

COPYRIGHT 2021 © THE AUDIT INSTITUTE LLC .. 14

 3

Disclaimer

The Audit Institute Reports are not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. These reports are not, nor should be considered,
an indication of the economics or value of any “product” or “asset” created by any team or
project that contracts The Audit Institute to perform a security review.

The Audit Institute Reports do not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the
technology’s proprietors, business, business model or legal compliance.

The Audit Institute Reports should not be used in any way to make decisions around investment
or involvement with any particular project. These reports in no way provide investment advice,
nor should be leveraged as investment advice of any sort.

The Audit Institute Reports represent an extensive auditing process intending to help our
customers increase the quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. The Audit
Institute's position is that each company and individual are responsible for their own due
diligence and continuous security. The Audit Institute's goal is to help reduce the attack vectors
and the high level of variance associated with utilizing new and consistently changing
technologies, and in no way claims any guarantee of security or functionality of the technology
we agree to analyze. View our full legal terms and conditions at https://audit.institute/

What is included in a report by The Audit Institute?

§ A document describing the detailed analysis of a particular piece(s) of source code
provided to The Audit Institute by a Client.

§ An organized collection of testing results, analysis and inferences made about the

structure, implementation and overall best practices of a particular piece of source
code.

§ Representation that a Client of The Audit Institute has indeed completed a round

of auditing with the intention to increase the quality of the company/product's IT
infrastructure and or source code.

 4

Overview

Project Summary
Project Name & Website Budz.finance - https://budz.finance/

Project Description The Audit Institute analyst team reviewed the contract
of the Budz.finance platform. The goal of the platform is
to provide investors with a high yield through an
innovative concept that involves burning, staking, and
farming their token. Their platform is described as a
financial experiment created by a team of budding
enthusiasts.

Platform Ethereum, Solidity

Compiler Version

0.6.4

Mainnet Address

Not Yet Deployed

GitHub Commit Hash 3ab20dcb0d237defab21fa6a84f12fabb0bf7c35

Delivery Date March 18th 2021

Method of Audit Static Analysis, Fuzzing, Manual Review

Consultants Engaged 2

Summary of Findings
Critical 0

Medium 0

Informational 4

Total Issues 4

 5

Executive Summary

This audit report exclusively covers the analysis that was conducted for the budz.finance
contract written in Solidity. The goal of the platform is to provide investors with a high yield
through an innovative concept that involves burning, staking, and farming their token.
Budz.finance was deployed to Binance Smart Chain (BSC) at:
0x1e0A4D330b60BaBf3386125aeD73b81C6afC8526, but the initial contract had to be
pulled so the team could address bugs. The scope of this audit report covers the new
iteration of their platform.

Staking BUDZ advertises a minimum APY of 42.0%, which users can eventually double to
84% APY as there is a direct proportion between the number of tokens burned to the amount
of BUDZ staked. To achieve this double APY, users must have burned 50% of their staked
balance. Note: There is a limit to burning up to 3x of the amount of interest a user has
accrued during the period of their stake. All interest and rewards distributed to users are
sourced entirely from minting.

The contract uses a struct called “Farmer” which maintains all of the investors’ staking data
that will be used for the platform’s calculations. After a minimum of seven days, users can
utilize the claimInterest function to claim their rewards and the UnstakeTokens function to
exit their staking position. Alternatively, users can opt to leverage their rewards to add to
their staking position via the RollStakeInterest function.

The farming feature offers a variable APY depending on the APY that is set for the LP token
and is paid in BUDZ. In order to be eligible to earn interest via farming, users must lock
their tokens into a choice of various liquidity tokens (The budz.finance team mentioned
there will be anywhere from 4 - 8 LP Addresses). The Farming functionality leverages APY
‘halvening’ periods, which any user can call/activate beginning after seven days, which is
then increased by seven days for every subsequent period (e.g. 7,14,21,28 days). These
halvening events will directly impact the APY calculation for harvesting rewards.

There are several key functions that contain the onlyAdmins modifier. These functions rely
on the assumption that the "setForeverLock" will be called after all of the APYs have been
set. Users should exercise caution investing in this as the admins have the capabilities to
adjust the APY's as frequently as they want until the "setForeverLock" is called. At which
point, the APY's are prevented from being altered (with the exception of halvenings and the
benefit of individually increasing one’s APY via burning).

There is a 10% distribution to the project team in the form of minting for each “Harvest”
that is called by a user. There is also a 4% distribution minted to the Dev team for claiming
and rolling interest. Additional minting occurs in the form of a referral program where both
the referrer and the referred user receive a 5% bonus on all token-yielding events.

Disclosed in the report below is a full analytical review of the platform after undergoing
various test scenarios and code review. The findings varied in criticality as some were
related to Solidity code standards and optimization.

Contracts in Scope

 CONTRACT NAME CONTRACT DESCRIPTION

budz-finance.sol

The budz.finance Platform Contract

 6

External Vulnerability Findings

Vulnerability Category Notes Results

Arbitrary Storage Write N/A PASS

Arbitrary Jump N/A PASS

Delegate Call to Untrusted Contract N/A PASS

Dependence on Predictable Variables N/A PASS

Deprecated Opcodes N/A PASS

Ether / Token Loss N/A PASS

Exceptions N/A PASS

External Calls N/A PASS

External Service Providers N/A PASS

Flash Loans N/A PASS

Inconsistent Emission of Events N/A PASS

Integer Over/Underflow N/A PASS

Multiple Sends N/A PASS

Oracles N/A PASS

Reentrancy Issues N/A PASS

Unchecked Retval N/A PASS

Suicide N/A PASS

State Change External Calls N/A PASS

Unchecked Retval N/A PASS

 7

Findings and Recommendations

Finding Name Criticality Analyst Notes

Break loop
when condition
is satisfied (Gas
Optimization)

Informational

The setPoolActive(…) function loops through all of the
addresses in the lpAddresses array to check if the
lpAddress passed into the function already exists in the
array. This operation can be very costly as the number of
addresses in lpAddresses increases. After the loop has
found a match in the array, there is no need to continue
iterating through the rest of the array. We recommend
inserting a break; after setting _newAddress to false as
shown below:

Multiplication
should be done
before division

Informational

Dividing usually leads to integer truncation, which can result
in calculations that are less precise. We recommend
multiplying before division to reduce the risk as much as
possible.

1.) calcStakingRewards() (Line #885) :

return (staked.div(apyAdjust
 .mul(stakingApyLimiter))
 .div(1251) * (minsPastStakeTime(_user)));

*Recommendation: The line can be re-written as follows:
return(staked.mul(minsPastStakeTime(_user)))
 .div(apyAdjust
 .mul(stakingApyLimiter)
 .mul(1251));

2.) calcHarvestRewards() (Line #912) :

return((lpFrozenBalances[_user][_lpIndex].mul(globalApy)
 .div(lpApy[lpAddresses[_lpIndex]]))
 .mul(minsPastFreezeTime(_user, _lpIndex))
 .div(halvening));

*Recommendation: The line can be re-written as follows:
return(lpFrozenBalances[_user][_lpIndex].mul(globalApy)
 .mul(minsPastFreezeTime(_user, _lpIndex)))
 .div(lpApy[lpAddresses[_lpIndex]]
 .mul(halvening));

 8

Finding Name Criticality Analyst Notes

Functions
should be
external

Informational

totalSupply() (Line #407-409)
transfer(address,uint256) (Line #426-429)
allowance(address,address) (Line #434-436)
approve(address,uint256) (Line #445-448)
transferFrom(address,address,uint256) (Line #463-467)
increaseAllowance(address,uint256) (Line #481-484)
decreaseAllowance(address,uint256) (Line #500-503)
FreezeLP(uint256,uint256,address) (Line #624-653)
UnfreezeLP(uint256) (Line #656-673)
HarvestBudz(uint256) (Line #677-688)
StakeTokens(uint256,address) (Line #726-745)
UnstakeTokens() (Line #748-763)
ClaimStakeInterest() (Line #766-772)
RollStakeInterest() (Line #775-781)
NewHalvening() (Line #828-836)
BurnBudz(uint256) (Line #838-853)
totalFrozenLpBalance(uint256) (Line #948-954)
setBUDZBNBpool(address) (Line #993-999)
setBurnAdjust(uint256) (Line #1002-1007)
stakingApyDecrease() (Line #1010-1017)
setGlobalApy(uint32) (Line #1019-1025)
setApy(uint32,address) (Line #1027-1033)
setPoolActive(address,bool) (Line #1035-1050)
setForeverLock() (Line #1052-1057)
distributeTokens(address) (Line #1060-1078)

*Recommendation: set these Functions as external to
slightly reduce gas cost.

Variables
should be
constant

Informational

The following variables should be set to constant:
BUDZFINANCE._p1
BUDZFINANCE._p2
BUDZFINANCE._p3

*Recommendation: set these variables as constant to
slightly reduce gas cost.

 9

Functions Overview

($) = payable function
= non-constant function
Int = Internal
Ext = External
Pub = Public

+ [Int] IERC20 + [Int] IUniswapV2Router02 (IUniswapV2Router01)
 - [Ext] totalSupply - [Ext] removeLiquidityETHSupportingFeeOnTransferTokens

 - [Ext] balanceOf
 - [Ext] transfer #

 - [Ext]
removeLiquidityETHWithPermitSupportingFeeOnTransferTokens

 - [Ext] allowance - [Ext]
swapExactTokensForTokensSupportingFeeOnTransferTokens #

 - [Ext] approve #
 - [Ext] transferFrom #

 - [Ext]
swapExactETHForTokensSupportingFeeOnTransferTokens ($)

 - [Ext]
swapExactTokensForETHSupportingFeeOnTransferTokens #

 + [Lib] SafeMath + [Int] IUniswapV2Pair
 - [Int] add - [Ext] name
 - [Int] sub - [Ext] symbol
 - [Int] sub - [Ext] decimals
 - [Int] mul - [Ext] totalSupply
 - [Int] div - [Ext] balanceOf
 - [Int] div - [Ext] allowance
 - [Int] mod - [Ext] approve #
 - [Int] mod - [Ext] transfer #
 - [Ext] transferFrom #
 + [Lib] Address - [Ext] DOMAIN_SEPARATOR
 - [Int] isContract - [Ext] PERMIT_TYPEHASH
 - [Int] sendValue # - [Ext] nonces
 - [Int] functionCall # - [Ext] permit #
 - [Int] functionCall # - [Ext] MINIMUM_LIQUIDITY
 - [Int] functionCallWithValue # - [Ext] factory
 - [Int] functionCallWithValue # - [Ext] token0
 - [Prv] _functionCallWithValue # - [Ext] token1
 - [Ext] getReserves
 + [Lib] SafeERC20 - [Ext] price0CumulativeLast
 - [Int] safeApprove # - [Ext] price1CumulativeLast
 - [Prv] _callOptionalReturn # - [Ext] kLast
 - [Ext] mint #
 + [Int] IUniswapV2Router01 - [Ext] burn #
 - [Ext] factory - [Ext] swap #
 - [Ext] WETH - [Ext] skim #
 - [Ext] addLiquidity # - [Ext] sync #
 - [Ext] addLiquidityETH ($)
 - [Ext] removeLiquidity # + TokenEvents
 - [Ext] removeLiquidityETH #
 - [Ext] removeLiquidityWithPermit #
 - [Ext] removeLiquidityETHWithPermit #
 - [Ext] swapExactTokensForTokens #
 - [Ext] swapTokensForExactTokens #
 - [Ext] swapExactETHForTokens ($)
 - [Ext] swapTokensForExactETH #
 - [Ext] swapExactTokensForETH #
 - [Ext] swapETHForExactTokens ($)
 - [Ext] quote
 - [Ext] getAmountOut
 - [Ext] getAmountIn
 - [Ext] getAmountsOut
 - [Ext] getAmountsIn

 10

 + BUDZFINANCE (IERC20,
TokenEvents)

+ BUDZFINANCE (IERC20, TokenEvents)
(Continued)

 - [Pub] <Constructor> #
 - [Ext] <Fallback> ($) - [Pub] BurnBudz #
 - [Pub] totalSupply - modifiers: synchronized
 - [Pub] balanceOf - [Pub] calcStakingRewards
 - [Pub] transfer # - [Pub] minsPastStakeTime
 - [Pub] allowance - [Pub] calcHarvestRewards
 - [Pub] approve # - [Pub] minsPastFreezeTime
 - [Pub] transferFrom # - [Pub] isStakeFinished
 - [Pub] increaseAllowance # - [Pub] totalFrozenLpBalance
 - [Pub] decreaseAllowance # - [Pub] budzBalance
 - [Int] _transfer # - [Pub] lpBalance
 - [Int] _mint # - [Pub] isHarvestable
 - [Int] _burn # - [Pub] setBUDZBNBpool #
 - [Int] _approve # - modifiers: onlyAdmins
 - [Int] _burnFrom # - [Pub] setBurnAdjust #
 - [Int] mintInitialTokens # - modifiers: onlyAdmins
 - modifiers: synchronized - [Pub] stakingApyDecrease #
 - [Pub] FreezeLP # - modifiers: onlyAdmins
 - modifiers: synchronized - [Pub] setGlobalApy #
 - [Pub] UnfreezeLP # - modifiers: onlyAdmins
 - modifiers: synchronized - [Pub] setApy #
 - [Pub] HarvestBudz # - modifiers: onlyAdmins
 - modifiers: synchronized - [Pub] setPoolActive #
 - [Int] harvest # - modifiers: onlyAdmins
 - [Int] scopeCheck # - [Pub] setForeverLock #
 - [Pub] StakeTokens # - modifiers: onlyAdmins
 - modifiers: synchronized - [Pub] distributeTokens #
 - [Pub] UnstakeTokens # - modifiers: onlyAdmins
 - modifiers: synchronized - [Pub] donate ($)
 - [Pub] ClaimStakeInterest # - [Pub] RollStakeInterest #
 - modifiers: synchronized - modifiers: synchronized
 - [Pub] RollStakeInterest # - [Int] rollInterest #
 - modifiers: synchronized - [Int] claimInterest #
 - [Int] rollInterest # - [Pub] NewHalvening #
 - [Int] claimInterest # - modifiers: synchronized
 - [Pub] NewHalvening #
 - modifiers: synchronized

 11

Control Flow

 12

 13

 14

Inheritance Graph

END OF REPORT

Copyright 2021 © The Audit Institute LLC
www.Audit.Institute

